333 research outputs found

    Performance portability for the CMS Reconstruction with Alpaka

    No full text
    For CMS, Heterogeneous Computing is a powerful tool to face the computational challenges posed by the upgrades of the LHC, and will be used in production at the High Level Trigger during Run 3. In principle, to offload the computational work on non-CPU resources, while retaining their performance, different implementations of the same code are required. This would introduce code-duplication which is not sustainable in terms of maintainability and testability of the software. Performance portability libraries allow to write code once and run it on different architectures with close-to-native performance. The CMS experiment is evaluating performance portability libraries for the near term future

    The TICL reconstruction at the CMS Phase-2 High Granularity Calorimeter Endcap

    No full text
    To sustain the harsher conditions of the high-luminosity LHC, the CMS Collaboration is designing a novel endcap calorimeter system. The new calorimeter will predominantly use silicon sensors to achieve sufficient radiation tolerance and will maintain highly granular information in the readout to help mitigate the effects of the pile up. In regions characterized by lower radiation levels, small scintillator tiles with individual SiPM on-tile readout are employed. A unique reconstruction framework (TICL The Iterative CLustering) is being developed within the CMS Software CMSSW to fully exploit the granularity and other significant detector features, such as particle identification and precision timing, with a view to mitigating pile up in the very dense environment of HL-LHC. The TICL framework has been thought of with heterogeneous computing in mind the algorithms and their data structures are designed to be executed on GPUs. In addition, geometry agnostic data structures have been designed to provide fast navigation and searching capabilities. Seeding capabilities (also exploiting information coming from other detectors), dynamic cluster masking, energy calibration, and particle identification are the main components of the framework. To allow for maximal flexibility, TICL allows the composition of different combinations of modules that can be chained together in an iterative fashion. The presenter will describe the design of TICL pattern recognition algorithms and advanced neural networks under development, as well as future plans

    Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction code

    No full text
    In the past years the landscape of tools for expressing parallel algorithms in a portable way across various compute accelerators has continued to evolve significantly. There are many technologies on the market that provide portability between CPU, GPUs from several vendors, and in some cases even FPGAs. These technologies include C++ libraries such as Alpaka and Kokkos, compiler directives such as OpenMP, the SYCL open specification that can be implemented as a library or in a compiler, and standard C++ where the compiler is solely responsible for the offloading. Given this developing landscape, users have to choose the technology that best fits their applications and constraints. For example, in the CMS experiment the experience so far in heterogeneous reconstruction algorithms suggests that the full application contains a large number of relatively short computational kernels and memory transfer operations. In this work we use a stand-alone version of the CMS heterogeneous pixel reconstruction code as a realistic use case of HEP reconstruction software that is capable of leveraging GPUs effectively. We summarize the experience of porting this code base from CUDA to Alpaka, Kokkos, SYCL, std par, and OpenMP offloading. We compare the event processing throughput achieved by each version on NVIDIA and AMD as well as on a CPU, and compare those to what a native version of the code achieves on each platform

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Observation of four top quark production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb1^{-1}. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.73.5+3.7^{+3.7}_{-3.5} (stat) 1.9+2.3^{+2.3}_{-1.9} (syst) fb, in agreement with the available standard model predictions

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb

    Measurement of the dependence of the hadron production fraction ratio fs/fuf_\mathrm{s} / f_\mathrm{u} and fd/fuf_\mathrm{d} / f_ \mathrm{u} on B meson kinematic variables in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe dependence of the ratio between the Bs0_\mathrm{s}^0 and B+^+ hadron production fractions, fs/fuf_\mathrm{s} / f_\mathrm{u}, on the transverse momentum (pTp_\mathrm{T}) and rapidity of the B mesons is studied using the decay channels Bs0_\mathrm{s}^0\to J/ψϕ/\psi\,\phi and B+^+\to J/ψ/\psi K+^+. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6 fb1^{-1}. The fs/fuf_\mathrm{s} / f_\mathrm{u} ratio is observed to depend on the B pTp_\mathrm{T} and to be consistent with becoming asymptotically constant at large pTp_\mathrm{T}. No rapidity dependence is observed. The ratio of the B0^0 to B+^+ hadron production fractions, fd/fuf_\mathrm{d} / f_\mathrm{u}, measured using the B0^0\to J/ψ/\psi K0^{*0} decay channel, is found to be consistent with unity and independent of pTp_\mathrm{T} and rapidity, as expected from isospin invariance

    Observation of the rare decay of the η\eta meson to four muons

    No full text
    A search for the rare η\eta\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb1^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the \emm decay as normalization, the branching fraction B(\mathcal{B}(ημ+μμ+μ) \to \mu^+\mu^-\mu^+\mu^-) = ( 5.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.7 B2μ\mathcal{B}_{2\mu} ) ×\times 109^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This is the first measurement of this branching fraction and is found to be in agreement with theoretical predictions

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Search for medium effects using jets from bottom quarks in PbPb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    The first study of the shapes of jets arising from bottom (b) quarks in heavy ion collisions is presented. Jet shapes are studied using charged hadron constituents as a function of their radial distance from the jet axis. Lead-lead (PbPb) collision data at a nucleon-nucleon center-of-mass energy of sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV were recorded by the CMS detector at the LHC, with an integrated luminosity of 1.69 nb1^{-1}. Compared to proton-proton collisions, a redistribution of the energy in b jets to larger distances from the jet axis is observed in PbPb collisions. This medium-induced redistribution is found to be substantially larger for b jets than for inclusive jets
    corecore